The Environmental Plasticity of Diverse Body Color Caused by Extremely Long Photoperiods and High Temperature in Saccharosydne procerus (Homoptera: Delphacidae)
نویسندگان
چکیده
Melanization reflects not only body color variation but also environmental plasticity. It is a strategy that helps insects adapt to environmental change. Different color morphs may have distinct life history traits, e.g., development time, growth rate, and body weight. The green slender planthopper Saccharosydne procerus (Matsumura) is the main pest of water bamboo (Zizania latifolia). This insect has two color morphs. The present study explored the influence of photoperiod and its interaction with temperature in nymph stage on adult melanism. Additionally, the longevity, fecundity, mating rate, and hatching rate of S. procerus were examined to determine whether the fitness of the insect was influenced by melanism under different temperature and photoperiod. The results showed that a greater number of melanic morphs occurred if the photoperiod was extremely long. A two-factor ANOVA showed that temperature and photoperiod both have a significant influence on melanism. The percentages of variation explained by these factors were 45.53 and 48.71%, respectively. Moreover, melanic morphs had greater advantages than non-melanic morphs under an environmental regime of high temperatures and a long photoperiod, whereas non-melanic morphs were better adapted to cold temperatures and a short photoperiod. These results cannot be explained by the thermal melanism hypothesis. Thus, it may be unavailable to seek to explain melanism in terms of only one hypothesis.
منابع مشابه
An Opposite Pattern to the Conventional Thermal Hypothesis: Temperature-Dependent Variation in Coloration of Adults of Saccharosydne procerus (Homoptera: Delphacidae)
Melanism is a common polymorphism in many insect species that also influences immune function. According to the thermal melanin hypothesis, ectothermic individuals from cooler environments have darker cuticles and higher polyphenol oxidase (PO) levels, which represent a better immunocompetence. In this study, the links among environmental temperature, melanism, and PO activity of Saccharosydne ...
متن کاملA new species of Saccharosydne Kirkaldy from Argentina (Hemiptera: Delphacidae).
Saccharosydne is the most diverse genus of the tribe Saccharosydnini. Male, female and nymphal Saccharosydne have been captured in recent collections from garlic (Allium sativum), rye (Secale cereale) and pampas grass (Cortaderia spp.) in Argentina. In this contribution, we describe and illustrate a new species S. subandina sp. nov., adding information on the geographical distribution and host ...
متن کاملEffects of temperature on mate location in the planthopper, Nilaparvata lugens (Homoptera: Delphacidae).
The planthopper, Nilaparvata lugens Stål (Homoptera: Delphacidae), uses acoustic signals generated by abdominal vibration and transmitted through rice (Oryza sativa L.) plants to locate mates. The influence of temperature (20, 28, and 32°C) on abdominal vibration patterns of individual females and males, proportion of mated females, and responsivity of male to female vibrational signals was in...
متن کاملDescription of developmental stages and some hosts of ribautodelphax notabilis logvinenko (homoptera delphacidae) in shiraz,iran
متن کامل
Effects of Neonatal C-Fiber Depletion on Interaction between Neocortical Short-Term and Long-Term Plasticity
Introduction: The primary somatosensory cortex has an important role in nociceptive sensory-discriminative processing. Altered peripheral inputs produced by deafferentation or by long-term changes in levels of afferent stimulation can result in plasticity of cortex. Capsaicin-induced depletion of C-fiber afferents results in plasticity of the somatosensory system. Plasticity includes short-term...
متن کامل